Publications
We work hard to attract, retain, and support the most outstanding faculty.
2005
2005
2005
2005
2005
A solvent-extraction-based radioassay for measuring sphingosine kinase (SKase) activity has been developed. The assay utilizes [3H]sphingosine substrate and differentially extracts the [3H]sphingosine-1-phosphate product. The extracted radioactivity is demonstrated to be primarily [3H]sphingosine-1-phosphate with less than 1% contamination by [3H]sphingosine. When assaying SKase activity in the soluble cell fraction, the extraction efficiency of the labeled sphingosine-1-phosphate product is a reproducible 78%, which allows for a simple back calculation to correct for the 22% extraction loss. With minor modification, the assay is also a reproducible procedure for determining SKase activity in subcellular membrane fractions. The assay is far more rapid than thin-layer chromatography and high-performance liquid chromatography methods, which makes it possible to do a large number of assays in a short period of time. The utility of the assay is demonstrated by using it to conduct a complete bisubstrate kinetic analysis of rat heart SKase.
View on PubMed2005
2005
2005
2005
2005
Manganese superoxide dismutase (MnSOD) is one of the main antioxidant enzymes that protects the heart against ischemia-reperfusion (I/R) injury. Ischemic preconditioning (IPC) is a short period of ischemia-reperfusion that reduces subsequent prolonged I/R injury. Although MnSOD localizes in mitochondria, the immediate subcellular distribution of MnSOD in heart after IPC and I/R has not been studied. In a Langendorff mouse heart model, IPC significantly improved cardiac function and reduced the infarction size induced by I/R. Immunoblotting and double immunostaining in fresh preparations revealed that I/R resulted in an increase in cytosolic MnSOD content accompanied by the release of cytochrome c. In contrast, IPC increased mitochondrial MnSOD and reduced cytosolic MnSOD and cytochrome c release induced by I/R. We found that compared with freshly prepared fractions, the freeze-thaw approach results in mitochondrial integrity disruption and release of large amounts of MnSOD into the cytosol along with mitochondrial markers even in the absence of I/R. In contrast, fresh preparations exhibit early MnSOD release into the cytosol after I/R that is prevented by IPC and cyclosporin A administration.
View on PubMed