Publications
We work hard to attract, retain, and support the most outstanding faculty.
2005
OBJECTIVE
Resolution of deep venous thrombosis (DVT) is involved in the pathogenesis of postthrombotic syndrome. Matrix metalloproteinases (MMPs) are a family of proteolytic enzymes that are critical in angiogenesis and tissue remodeling. We hypothesized that MMP-2 and its membrane-bound activator membrane type-1 matrix metalloproteinase (MT1-MMP) expression would be expressed and activated during the resolution of DVT.
METHODS
DVT was generated by caval ligation in wild-type and MMP-2 transgenic reporter mice. Ligated and sham-operated (control) cavae were analyzed for MMP-2 transcription (beta-galactosidase activity in MMP-2 reporter mice) and MT1-MMP mRNA by real-time polymerase chain reaction. MMP-2 activity was determined by zymography, and immunohistochemical staining for beta-galactosidase and MT1-MMP protein was used to localize expression. Human umbilical vascular endothelial cells (HUVEC) were treated with 10 U/mL thrombin and MMP-2 and MT1-MMP mRNA levels and MMP-2 activity was determined.
RESULTS
MMP-2 activity increased 71% (n = 5, P < .05) at day 8 in ligated vs control cavae by zymography. beta-galactosidase activity showed a 1.2-fold (n = 8, P < .05) and 1.7-fold (n = 8, P < .05) induction in MMP-2 transcription at day 3 and day 8, respectively. No significant MT1-MMP gene induction was seen at day 3 in ligated vs control cavae, but MT1-MMP mRNA was upregulated 2.5-fold (n = 8, P < .05) in ligated cavae at day 8. Immunohistochemical staining localized MMP-2 and MT1-MMP expression to the vein wall and cellular infiltrates of the thrombus. Thrombin-treated HUVEC showed differential responses of MMP-2 and MT1-MMP. Zymography of conditioned media and cell lysates illustrated a 220% (152.6 +/- 8.6 vs 69.445 +/- 5.46 pixels/unit area, n = 5, P < .05) and 150% (74.1 +/- 7.3 vs 49.2 +/- 5.7 pixels/unit area, n = 5, P < .05) increases in MMP-2 activity respectively. MMP-2 mRNA levels were downregulated 30% (0.48 +/- 0.023 vs 0.63 +/- 0.035 copies of MMP-2 mRNA/copy GAPDH, n = 5, P < .05), whereas MT1-MMP message was upregulated 250% (0.147 +/- 0.009 vs 0.059 +/- 0.005 copies of MT1-MMP mRNA/copy GAPDH, n = 5, P < .05).
CONCLUSIONS
Resolution of DVT is associated with increased MMP-2 transcription and activity as well as MT1-MMP expression. Thrombin may mediate the increase in MT1-MMP noted in DVT. This is the first article studying MMP-2 and MT1-MMP transcription in DVT. These findings add DVT resolution to the class of inflammatory and fibrotic disorders in which transcriptional activation of the MT1-MMP/MMP-2 genes occurs and identify a potential therapeutic target to modulate this clinically relevant process.
CLINICAL RELEVANCE
Postthrombotic syndrome remains a significant clinical problem after deep venous thrombosis (DVT), but the cellular and molecular mechanisms involved in thrombus resolution and vein wall fibrosis remain undefined. Matrix metalloproteinase (MMP) enzymes are critical to cell migration and matrix breakdown. We identify gene transcription and activity of two MMP isoforms, MMP-2 and MMP-14 (membrane type MMP 1, MT1-MMP) in the resolution phase of experimental DVT and in thrombin-treated endothelial cells. These studies define new proteases potentially important to resolution of DVT and development of postthrombotic syndrome.
View on PubMed2005
Alkaline incubation of NADH results in the formation of a very potent inhibitor of complex I (NADH:ubiquinone oxidoreductase). Mass spectroscopy (molecular mass equal to 696) and absorption spectroscopy suggest that the inhibitor is derived from attachment of two oxygen atoms to the nicotinamide moiety of NADH. The inhibitor is competitive with respect to NADH with a K(i) of about 10(-8)M. The inhibitor efficiently suppresses NADH-oxidase, NADH-artificial acceptor reductase, and NADH-quinone reductase reactions catalyzed by submitochondrial particles, as well as the reactions catalyzed by either isolated complex I or the three subunit flavoprotein fragment of complex I.
View on PubMed2005
2005
2005
2005
2005
Renal failure not only alters the renal elimination, but also the non-renal disposition of drugs that are extensively metabolized by the liver. Although reduced metabolic enzyme activity in some cases can be responsible for the reduced drug clearance, alterations in the transporter systems may also be involved in the process. With the development of renal failure, the renal secretion of organic ions mediated by organic anion transporters (OATs) and organic cation transporters (OCTs) is decreased. 3-Carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF) and other organic anionic uremic toxins may directly inhibit the renal excretion of various drugs and endogenous organic acids by competitively inhibiting OATs. In addition, the expression of OAT1 and OCT2 was reduced in chronic renal failure (CRF) rats. Renal failure also impairs the liver uptake of drugs and organic anions, such as bromosulphophthalein (BSP), indocyanine green (ICG), and thyroxine, where organic anion transport polypeptides (OATPs) are the major transporters. Most previous studies have been done in animals or cell culture, very often in rat models, but these are presumed to reflect the presentation of advanced renal disease in humans as well. Recent studies demonstrate that the uremic toxins CMPF and indoxyl sulfate (IS) can directly inhibit rOatp2 and hOATP-C in hepatocytes. The protein content of the liver uptake transporters Oatp1, 2, and 4 were significantly decreased in CRF rats. Decreased activity of the intestinal efflux transporter, P-glycoprotein (P-gp), was also observed in CRF rats, with no significant change of protein content, suggesting that uremic toxins may suppress P-gp function. However, increased protein levels of multidrug resistance-associated protein (MRP) 2 in the kidney and MRP3 in the liver were found in CRF rats, suggesting an adaptive response that may serve as a protective mechanism. Increases in drug areas under the curve (AUCs) in subjects with advanced renal disease for drugs that are not renally excreted are consistent with uremic toxin effects on either intestinal or hepatic cell transporters, metabolizing enzymes, or both. In conclusion, alterations of drug transporters, as well as metabolic enzymes, in patients with renal failure can be responsible for reduced drug clearance.
View on PubMed2005