Publications
We work hard to attract, retain, and support the most outstanding faculty.
2005
2005
BACKGROUND
Estimating an individual woman's absolute risk for breast cancer is essential for decision making about screening and preventive recommendations. Although the current standard, the Gail model, is well calibrated in populations, it performs poorly for individuals. Mammographic breast density (BD) may improve the predictive accuracy of the Gail model.
METHODS
Prospective observational cohort of 81,777 women in the San Francisco Mammography Registry presenting for mammography during 1993 through 2002 who had no prior diagnosis of breast cancer. Breast density was rated by clinical radiologists using the Breast Imaging Reporting and Data System classification (almost entirely fat; scattered fibroglandular densities; heterogeneously dense; extremely dense). Breast cancer cases were identified through linkage to Northern California Surveillance Epidemiology End Results (SEER) program. We compared the predictive accuracy of models with Gail risk, breast density, and the combination. All models were adjusted for age and ethnicity.
RESULTS
During 5.1 years of follow-up, 955 women were diagnosed with invasive breast cancer. The Gail model had modest predictive accuracy (concordance index (c-index) 0.67; 95% CI 0.65-0.68). Adding breast density to the model increased the predictive accuracy to 0.68 (95% CI .66-.70, p < 0.01 compared with the Gail model alone). The model containing only breast density adjusted for age and ethnicity had predictive accuracy equivalent to the Gail model (c-index 0.67, 95% CI 0.65-0.68).
CONCLUSION
The addition of breast density measured by BI-RADS categories minimally improved the predictive accuracy of the Gail model. A model based on breast density alone adjusted for age and ethnicity was as accurate as the Gail model.
View on PubMed2005
OBJECTIVE
To estimate the effect of 2 years of treatment with ultralow-dose transdermal estradiol (E2) on incontinence in postmenopausal women.
METHODS
Ultra Low Dose Transdermal estRogen Assessment (ULTRA) was a multicenter, randomized, double-blinded, placebo-controlled trial of unopposed ultralow-dose (0.014 mg/d) transdermal E2 for prevention of osteoporosis in 417 postmenopausal women aged 60 to 80 years. Frequency of incontinence episodes was assessed at baseline and after 4 months and 2 years of treatment using a self-reported questionnaire. We used an intention-to-treat analysis to compare change in incontinence frequency, improved (decreased 2 or more episodes per week), unchanged (increased or decreased no more than 1 episode per week), or worsened (increased 2 or more episodes per week) between the E2 and placebo groups among women with and without at least weekly incontinence at baseline.
RESULTS
At baseline, the prevalence of at least weekly incontinence was similar between E2 and placebo groups (43%). After 2 years, there was no difference between groups in the proportions of women with incontinence at baseline whose incontinence improved, worsened, or was unchanged. The odds ratio for worsening incontinence in the E2 compared with placebo group was 1.35 (95% confidence interval 0.75-2.42. In women without incontinence at baseline, the odds of developing at least weekly incontinence after 2 years in the E2 compared with placebo group was not significant (odds ratio 1.2, 95% confidence interval 0.7-2.2).
CONCLUSION
Two years of treatment with unopposed ultralow-dose transdermal E2 did not substantially change the frequency of incontinence symptoms or alter the risk of developing at least weekly incontinence.
LEVEL OF EVIDENCE
I.
View on PubMed2005
OBJECTIVE
To estimate the effect of hormone therapy on risk of stress and urge urinary incontinence.
METHODS
The Heart Estrogen/progestin Replacement Study was a randomized, placebo-controlled, double-blinded trial to evaluate daily oral conjugated estrogen (0.625 mg) plus medroxyprogesterone acetate (2.5 mg) therapy for the prevention of heart disease events in women with established heart disease. The 1,208 participants in Heart Estrogen/progestin Replacement Study who reported no loss of urine in the previous 7 days at baseline are included in this analysis.
RESULTS
During 4.2 years of treatment, 64% of women randomly assigned to hormone therapy compared with 49% of those assigned to placebo reported weekly incontinence (P < .001). The higher risk of incontinence in the hormone group was evident at 4 months, persisted throughout the treatment period, and was independent of the age of the women. The odds ratios for weekly incontinence among women on hormone therapy compared with placebo were 1.5 for urge incontinence (95% confidence interval [CI] 1.2-1.8; P < .001) and 1.7 for stress incontinence (95% CI 1.5-2.1; P < .001). Four years of treatment with hormone therapy caused an excess risk of 12% for weekly urge incontinence and 16% for weekly stress incontinence; the corresponding numbers needed to harm were 8.6 (95% CI 5.8-16.6) and 6.2 (95% CI 4.6-9.4).
CONCLUSION
Estrogen plus progestin therapy increases risk of urge and stress incontinence within 4 months of beginning treatment.
LEVEL OF EVIDENCE
I.
View on PubMed2005
While tissue engineering has long been thought to possess enormous potential, conventional applications using biodegradable scaffolds have limited the field's progress, demonstrating a need for new methods. We have previously developed cell sheet engineering using temperature-responsive culture dishes in order to avoid traditional tissue engineering approaches, and their related shortcomings. Using temperature-responsive dishes, cultured cells can be harvested as intact sheets by simple temperature changes, thereby avoiding the use of proteolytic enzymes. Cell sheet engineering therefore allows for tissue regeneration by either direct transplantation of cell sheets to host tissues or the creation of three-dimensional structures via the layering of individual cell sheets. By avoiding the use of any additional materials such as carrier substrates or scaffolds, the complications associated with traditional tissue engineering approaches such as host inflammatory responses to implanted polymer materials, can be avoided. Cell sheet engineering thus presents several significant advantages and can overcome many of the problems that have previously restricted tissue engineering with biodegradable scaffolds.
View on PubMed2005
2005
2005