Publications
We work hard to attract, retain, and support the most outstanding faculty.
1992
1992
1992
1992
1992
A polymerase chain reaction (PCR)-based homology cloning strategy was used to define the spectrum of stromelysin-like matrix metalloproteinases (MMPs) synthesized by cultured glomerular mesangial cells (MC). Using this technique, cDNAs encoding an unusual, truncated member of the MMP family, punctuated (putative) metalloproteinase (PUMP-1), were exclusively isolated. Incubation with the cytokines interleukin 1 and tumour necrosis factor increased the abundance of PUMP-1 mRNA in mesangial cells. The mesangial PUMP-1 mRNA is processed in a tissue-specific manner, yielding a transcript containing repeated 3'-untranslated region ATTTA motifs commonly found in cytokines with limited mRNA stability. Polyclonal antibodies prepared against the C-terminal region of the PUMP-1 protein documented release of this enzyme by cultures of cytokine-stimulated MC and permitted identification of PUMP-1-expressing mesangial cells within clinical biopsy specimens of acute glomerulonephritis. These findings represent new molecular and clinical evidence that non-malignant cells process and secrete this unusual member of the MMP family in a cytokine-mediated, tissue-specific manner. Mesangial synthesis of PUMP-1 may contribute to the progression of injury during glomerular inflammatory states.
View on PubMed1992
Interleukin-1 (IL-1) is synthesized as a 31 kDa precursor protein, whose multiple extracellular activities are attributed to receptor binding of a processed, carboxy-terminal 17 kDa peptide. Unlike other secreted proteins, the IL-1 precursor lacks a hydrophobic leader sequence and is not found in organelles composing the classical secretory pathway. In order to further clarify the intracellular processing of IL-1, we studied its site of synthesis in human monocytes. Secreted and integral membrane proteins are translated on membrane-bound polyribosomes, while intracellular proteins are translated on free polyribosomes. Free and membrane-bound polysomes were isolated from Lipid A-stimulated monocyte lysates and immunoblotted using antibodies specific to the N-terminal regions of the IL-1 alpha and beta precursors. Free polysome fractions showed multiple small bands consistent with nascent peptide chains; membrane-bound polysomes yielded no detectable IL-1. Polysome fractions were then analyzed by immunoelectron microscopy; nascent IL-1 alpha and beta peptide chains were readily seen emerging from cytoskeletal-associated free polyribosomes, but not membrane-bound polyribosomes. Electron microscopic in situ hybridization revealed IL-1 mRNA chains attached to cytoskeletal-associated free, but not membrane-bound polyribosomes. The intracellular distribution of the fully synthesized IL-1 beta precursor was studied in human mesangial cells (HMC), whose cytoskeletal organization is more readily evaluated than that of monocytes. Dual immunofluorescence microscopy of these cells revealed a complex intracellular distribution of the fully synthesized 31 kDa IL-1 precursors. IL-1 was asymmetrically distributed between cytosolic, microtubule, and nuclear compartments, without association with actin or intermediate filaments. This demonstration of the sites of IL-1 synthesis and patterns of intracellular distribution provide further evidence for an extracellular release mechanism which is clearly distinct from the classical secretory pathway.
View on PubMed1992
1992
1992
Characterization of Staphylococcus aureus-platelet binding by quantitative flow cytometric analysis.
1992