Publications
We work hard to attract, retain, and support the most outstanding faculty.
2014
BACKGROUND AND STUDY AIMS
The learning curve for optical diagnosis of colorectal polyps with the narrow-band imaging (NBI) is unknown. To forego histological analysis of diminutive polyps diagnosed optically with high confidence, guidelines recommend ≥ 90 % negative predictive value (NPV) and concordance of ≥ 90 % for surveillance intervals predicted optically and histologically. We aimed to study the learning of optical diagnosis for colorectal polyps.
PATIENTS AND METHODS
We studied five endoscopists as part of a randomized multisite trial comparing near-focus and standard-focus views for optical diagnosis. They trained using a computer-based module, followed by 10 real-time colonoscopies with pathology correlation. Endoscopists then optically diagnosed and resected all the polyps found during 558 consecutive colonoscopies, and diagnoses were compared with pathology. Endoscopists repeated the training module at the study midpoint. NPV and concordance of surveillance intervals for diminutive polyps diagnosed optically with high confidence were measured over time.
RESULTS
Endoscopists showed high diagnostic performance, with a nonsignificant trend toward higher NPV in the second half of the study. For the 445 polyps in the standard-view arm, the NPV was 88.0 % (95 %CI 75.7 % - 95.5 %) in the first half and 95.8 % (88.3 % - 99.1 %) in the second; P = 0.7. Three endoscopists in the first half and four in the second achieved > 90 % NPV. Concordance of surveillance intervals was identical in the first and second halves at 98.1 % (95 %CI 93.3 % - 99.8 %).
CONCLUSIONS
High NPV for the prediction of non-neoplasms with NBI was achieved and maintained in this group of endoscopists who participated in standardized and continued training. Both NPV and surveillance interval agreement indicated high performance in the optical diagnosis of colorectal polyps and exceeded thresholds.
View on PubMed2014
2014
2014
UNLABELLED
The full-length isoform of matrixmetalloproteinase-2 (FL-MMP-2) plays a role in turnover of the cardiac extracellular matrix. FL-MMP-2 is also present intracellularly in association with sarcomeres and, in the setting of oxidative stress, cleaves myofilament proteins with resultant impaired contractility. Recently, a novel N-terminal truncated MMP-2 isoform (NTT-MMP-2) generated during oxidative stress was identified and shown to induce severe systolic failure; however, the injury mechanisms remained unclear. In this study, cardiac-specific NTT-MMP-2 transgenic mice were used to determine the physiological effects of NTT-MMP-2 on: force development of intact myocardium; the function of cardiac myofilaments in demembranated myocardium; and on intracellular Ca(2+) transients in isolated myocytes. We related the contractile defects arising from NTT-MMP-2 expression to the known intracellular locations of NTT-MMP-2 determined using immunohistochemistry. Comparison was made with the pathophysiology arising from cardiac-specific FL-MMP-2 transgenic mice. Consistent with previous studies, FL-MMP-2 was localized to myofilaments, while NTT-MMP-2 was concentrated within subsarcolemmal mitochondria and to sites in register with the Z-line. NTT-MMP-2 expression caused a 50% reduction of force development by intact myocardium. However, NTT-MMP-2 expression did not reduce myofilament force development, consistent with the lack of NTT-MMP-2 localization to myofilaments. NTT-MMP-2 expression caused a 50% reduction in the amplitude of Ca(2+) transients, indicating impaired activation.
CONCLUSIONS
Unlike FL-MMP-2, NTT-MMP-2 does not mediate myofilament damage. Instead, NTT-MMP-2 causes impaired myocyte activation, which may involve effects due to localization in mitochondria and/or to transverse tubules affecting Ca(2+) transients. Thus, FL-MMP-2 and NTT-MMP-2 have discrete intracellular locations and mediate different intracellular damage to cardiac myocytes.
View on PubMed2014
2014
2014
2014
2014