Publications
We work hard to attract, retain, and support the most outstanding faculty.
2016
2016
BACKGROUND
We assessed nasopharyngeal (NP) carriage of five pathogens in febrile children with and without acute respiratory infection (ARI) of the upper (URTI) or lower tract, attending health facilities in Tanzania.
METHODS
NP swabs collected from children (N = 960) aged 2 months to 10 years, and with a temperature ≥38°C, were utilized to quantify bacterial density of S. pneumoniae (Sp), H. influenzae (Hi), M. catarrhalis (Mc), S. aureus (Sa), and N. meningitidis (Nm). We determined associations between presence of individual species, densities, or concurrent carriage of all species combination with respiratory diseases including clinical pneumonia, pneumonia with normal chest radiography (CXR) and endpoint pneumonia.
RESULTS
Individual carriage, and NP density, of Sp, Hi, or Mc, but not Sa, or Nm, was significantly associated with febrile ARI and clinical pneumonia when compared to febrile non-ARI episodes. Density was also significantly increased in severe pneumonia when compared to mild URTI (Sp, p<0.002; Hi p<0.001; Mc, p = 0.014). Accordingly, concurrent carriage of Sp+, Hi+, and Mc+, in the absence of Sa- and Nm-, was significantly more prevalent in children with ARI (p = 0.03), or clinical pneumonia (p<0.001) than non-ARI, and in children with clinical pneumonia (p = 0.0007) than URTI. Furthermore, Sp+, Hi+, and Mc+ differentiated children with pneumonia with normal CXR, or endpoint pneumonia, from those with URTI, and non-ARI cases.
CONCLUSIONS
Concurrent NP carriage of Sp, Hi, and Mc was a predictor of clinical pneumonia and identified children with pneumonia with normal CXR and endpoint pneumonia from those with febrile URTI, or non-ARI episodes.
View on PubMed2016
2016
2016
2016
2016
2016
2016
PURPOSE OF REVIEW
This study aims to describe bone marrow fat changes in diabetes and to discuss the potential role of marrow fat in skeletal fragility.
RECENT FINDINGS
Advances in non-invasive imaging have facilitated marrow fat research in humans. In contrast to animal studies which clearly demonstrate higher levels of marrow fat in diabetes, human studies have shown smaller and less certain differences. Marrow fat has been reported to correlate with A1c, and there may be a distinct marrow lipid saturation profile in diabetes. Greater marrow fat is associated with impaired skeletal health. Marrow fat may be a mediator of skeletal fragility in diabetes. Circulating lipids, growth hormone alterations, visceral adiposity, and hypoleptinemia have been associated with greater marrow fat and may represent potential mechanisms for the putative effects of diabetes on marrow fat, although other factors likely contribute. Additional research is needed to further define the role of marrow fat in diabetic skeletal fragility and to determine whether marrow fat is a therapeutic target.
View on PubMed