We work hard to attract, retain, and support the most outstanding faculty.
2009
CD44 is a transmembrane glycoprotein expressed in various tissues including the skin. Previous studies indicated that CD44 is required for epidermal permeability barrier homeostasis and keratinocyte differentiation. Yet, while some studies have demonstrated that CD44 is critical for the development of inflammation, others have shown that CD44 is not essential for the development of cutaneous inflammation. In this study, we evaluated the changes in epidermal CD44 expression in a variety of skin inflammatory models and determined whether CD44 is required for the development of cutaneous inflammation. Inflammatory responses were compared in CD44 KO versus wild-type mice in acute models of irritant and allergic contact dermatitis, as well as in a subacute allergic contact dermatitis induced by repeated hapten treatment. Inflammatory responses were assessed by measuring ear thickness and epidermal hyperplasia in haematoxylin & eosin-stained sections. Our results demonstrate that: (i) epidermal CD44 expression increases in both acute and subacute cutaneous inflammatory models; and (ii) acute disruption of the epidermal permeability barrier function increases epidermal CD44 expression. Whereas inflammatory responses did not differ between CD44 KO and wild-type mice in acute models of irritant and allergic contact dermatitis, both inflammatory responses and epidermal hyperplasia increased in CD44 KO mice following repeated hapten challenges. These results show first, that permeability barrier disruption and inflammation stimulate epidermal CD44 expression, and second, that CD44 modulates epidermal proliferation and inflammatory responses in a subacute murine allergic contact dermatitis model.
View on PubMed2009
CONTEXT
Type 2 diabetes is associated with higher fracture risk at a given bone mineral density. Advanced glycation endproducts (AGEs) accumulate in bone collagen with age and diabetes and may weaken bone.
OBJECTIVE
The aim was to determine whether urine pentosidine, an AGE, was associated with fractures in older adults with and without diabetes.
DESIGN
We performed an observational cohort study.
SETTING
We used data from the Health, Aging and Body Composition prospective study of white and black, well-functioning men and women ages 70-79 yr.
PARTICIPANTS
Participants with (n = 501) and without (n = 427) diabetes were matched on gender, race, and study site.
PREDICTOR
Urine pentosidine was assayed from frozen stored baseline specimens.
MAIN OUTCOME MEASURES
Incident clinical fractures and baseline vertebral fractures were measured.
RESULTS
Despite higher bone mineral density, clinical fracture incidence (14.8 vs. 12.6%) and vertebral fracture prevalence (2.3 vs. 2.9%) were not lower in those with diabetes (P > 0.05). In multivariable models, pentosidine was associated with increased clinical fracture incidence in those with diabetes [relative hazard, 1.42; 95% confidence interval (CI), 1.10, 1.83, for 1 sd increase in log pentosidine] but not in those without diabetes (relative hazard, 1.08; 95% CI, 0.79, 1.49; P value for interaction = 0.030). In those with diabetes, pentosidine was associated with increased vertebral fracture prevalence (adjusted odds ratio, 5.93; 95% CI, 2.08, 16.94, for 1 sd increase in log pentosidine) but not in those without diabetes (adjusted odds ratio, 0.74; 95% CI, 0.30, 1.83; P value for interaction = 0.005).
CONCLUSIONS
Higher pentosidine levels are a risk factor for fracture in older adults with diabetes and may account in part for reduced bone strength in type 2 diabetes.
View on PubMed2009
The goal of epidermal ontogenesis is to form a stratum corneum (SC), which is required for post-natal permeability barrier function. The regulation of epidermal ontogenesis is poorly understood, but nuclear hormone receptors have been shown to have an important function. As peroxisome proliferator-activated receptor-delta (PPARdelta) is very abundant in fetal epidermis and PPARdelta activation stimulates differentiation and permeability barrier formation in adults, we hypothesized that PPARdelta might regulate epidermal ontogenesis. Treatment of fetal rat explants with the PPARdelta ligand, GW 610742X, accelerates permeability barrier development, evidenced by a decrease in transepidermal water loss and an enhanced outside-in barrier function, attributable to the presence of more mature lamellar membranes in the SC and enhanced expression of loricrin and involucrin. Similarly, the intra-amniotic administration of GW 610742X also accelerates the formation of the SC and permeability barrier development. Finally, in PPARdelta-deficient mice the formation of the SC and the expression of differentiation-related proteins were delayed on days 16.5 and 17.5 of gestation. However, at later stages (day 18.5 and after birth), there were no differences between wild-type- and PPARdelta-deficient mice, indicating only a transient delay in epidermal ontogenesis. These studies show that PPARdelta has a role in SC formation and permeability barrier development.
View on PubMed2009
BACKGROUND
Mutations in the human filaggrin gene (FLG) are associated with atopic dermatitis (AD) and are presumed to provoke a barrier abnormality. Yet additional acquired stressors might be necessary because the same mutations can result in a noninflammatory disorder, ichthyosis vulgaris.
OBJECTIVE
We examined here whether FLG deficiency alone suffices to produce a barrier abnormality, the basis for the putative abnormality, and its proinflammatory consequences.
METHODS
By using the flaky-tail mouse, which lacks processed murine filaggrin because of a frameshift mutation in the gene encoding profilaggrin that mimics some mutations in human AD, we assessed whether FLG deficiency provokes a barrier abnormality, further localized the defect, identified its subcellular basis, and assessed thresholds to irritant- and hapten-induced dermatitis.
RESULTS
Flaky-tail mice exhibit low-grade inflammation with increased bidirectional, paracellular permeability of water-soluble xenobiotes caused by impaired lamellar body secretion and altered stratum corneum extracellular membranes. This barrier abnormality correlates with reduced inflammatory thresholds to both topical irritants and haptens. Moreover, when exposed repeatedly to topical haptens at doses that produce no inflammation in wild-type mice, flaky-tail mice experience a severe AD-like dermatosis with a further deterioration in barrier function and features of a T(H)2 immunophenotype (increased CRTH levels plus inflammation, increased serum IgE levels, and reduced antimicrobial peptide [mBD3] expression).
CONCLUSIONS
FLG deficiency alone provokes a paracellular barrier abnormality in mice that reduces inflammatory thresholds to topical irritants/haptens, likely accounting for enhanced antigen penetration in FLG-associated AD.
View on PubMed2009
Neutralization of the normally acidic stratum corneum (SC) has deleterious consequences for permeability barrier homeostasis and SC integrity/cohesion attributable to serine proteases (SPs) activation leading to deactivation/degradation of lipid-processing enzymes and corneodesmosomes (CD). As an elevated pH compromises SC structure and function, we asked here whether SC hyperacidification would improve the structure and function. We lowered the pH of mouse SC using two polyhydroxyl acids (PHA), lactobionic acid (LBA), or gluconolactone (GL). Applications of the PHA reduced the pH at all levels of SC of hairless mouse, with further selective acidification of SC membrane domains, as shown by fluorescence lifetime imaging. Hyperacidification improved permeability barrier homeostasis, attributable to increased activities of two key membrane-localized, ceramide-generating hydrolytic enzymes (beta-glucocerebrosidase and acidic sphingomyelinase), which correlated with accelerated extracellular maturation of SC lamellar membranes. Hyperacidification generated "supernormal" SC integrity/cohesion, attributable to an SP-dependent decreased degradation of desmoglein-1 (DSG1) and the induction of DSG3 expression in lower SC. As SC hyperacidification improves the structure and function, even of normal epidermis, these studies lay the groundwork for an assessment of the potential utility of SC acidification as a therapeutic strategy for inflammatory dermatoses, characterized by abnormalities in barrier function, cohesion, and surface pH.
View on PubMed2009
BACKGROUND
Atopic dermatitis (AD) is a chronic inflammatory dermatosis now increasingly linked to mutations that alter the structure and function of the stratum corneum. Activators of peroxisome proliferator-activated receptors (PPARs) alpha, beta/delta, and gamma and liver X receptor (LXR) regulate epidermal protein and lipid production, leading to superior barrier function. Additionally, some of these activators exhibit potent antihyperplastic and anti-inflammatory activity in irritant contact dermatitis and acute allergic contact dermatitis murine models.
OBJECTIVE
We evaluated the efficacy of PPAR/LXR activation in a hapten (oxazolone [Ox])-induced AD-like model (Ox-AD) in hairless mice.
METHODS
Ox-AD was established with 10 Ox challenges (every other day) on the flank. After the establishment of Ox-AD, twice-daily topical application with individual PPAR/LXR activators was then performed for 4 days, with continued Ox challenges every other day. The efficacy of topical PPAR/LXR activators to reduce parameters of Ox-AD was assessed physiologically, morphologically, and immunologically.
RESULTS
Certain topical activators of PPARalpha, PPARbeta/delta, and LXR, but not activators of PPARgamma, reversed the clinical dermatosis, significantly improved barrier function, and increased stratum corneum hydration in Ox-AD mice. In addition, the same activators, but again not PPARgamma, largely reversed the immunologic abnormalities in Ox-AD mice, including the increased T(H)2 markers, such as tissue eosinophil/mast cell density, serum thymus and activation-related chemokine levels, the density of chemoattractant receptor-homologous molecule expressed on T(H)2-positive lymphocytes (but not serum IgE levels), and reduced IL-1alpha and TNF-alpha activation, despite ongoing hapten challenges.
CONCLUSION
These results suggest that topical applications of certain activators/ligands of PPARalpha, PPARbeta/delta, and LXR could be useful for the treatment of AD in human subjects.
View on PubMed2009
2010
ABCG1, a member of the ATP binding cassette superfamily, facilitates the efflux of cholesterol from cells to HDL. In this study, we demonstrate that ABCG1 is expressed in cultured human keratinocytes and murine epidermis, and induced during keratinocyte differentiation, with increased levels in the outer epidermis. ABCG1 is regulated by liver X receptor (LXR) and peroxisome proliferator-activated receptor-δ (PPAR-δ) activators, cellular sterol levels, and acute barrier disruption. Both LXR and PPAR-δ activators markedly stimulate ABCG1 expression in a dose- and time-dependent fashion. PPAR-γ activators also increase ABCG1 expression, but to a lesser degree. In contrast, activators of PPAR-α, retinoic acid receptor, retinoid X receptor, and vitamin D receptor do not alter ABCG1 expression. In response to increased intracellular sterol levels, ABCG1 expression increases, whereas inhibition of cholesterol biosynthesis decreases ABCG1 expression. In vivo, ABCG1 is stimulated 3-6 h after acute barrier disruption by either tape stripping or acetone treatment, an increase that can be inhibited by occlusion, suggesting a potential role of ABCG1 in permeability barrier homeostasis. Although Abcg1-null mice display normal epidermal permeability barrier function and gross morphology, abnormal lamellar body (LB) contents and secretion leading to impaired lamellar bilayer formation could be demonstrated by electron microscopy, indicating a potential role of ABCG1 in normal LB formation and secretion.
View on PubMed2010
The regulation of epidermal ontogenesis is a complex process. Previous studies have shown that cytokines (IL-1, TNFalpha and IL-6) regulate permeability barrier homeostasis in adult mice. Recently, we reported that IL-1 and TNFalpha accelerate stratum corneum (SC) formation and permeability barrier development in foetal rodents. Here, we determined whether IL-6 also regulates SC formation and permeability barrier development during late gestation. Using a rat skin explant model, we demonstrated that IL-6 accelerates permeability barrier formation in a time- and dose-dependent fashion. This acceleration of barrier formation is attributable to (a) accelerated lamellar membrane maturation, (b) formation of a multi-layer SC and (c) enhanced expression of epidermal differentiation markers. When comparing epidermis of IL-6-deficient (knockout mice) and wild-type foetal mice at days 16-18, we could not detect any abnormalities in either SC formation or the expression of differentiation markers in knockout (KO) mice. In parallel, the basal expression levels of IL-6 mRNA in epidermis and IL-6 protein in amniotic fluid were very low, with only a minimal change in IL-6 receptor mRNA levels in epidermis of days 16-22 foetal mice. These low IL-6 levels may account, at least in part, for the absence of epidermal abnormalities in IL-6 KO mice. In conclusion, exogenous IL-6 accelerates epidermal ontogenesis, but it is not essential for normal epidermal maturation.
View on PubMed