We work hard to attract, retain, and support the most outstanding faculty.
2012
Prostasin is a membrane-anchored protease expressed in airway epithelium, where it stimulates salt and water uptake by cleaving the epithelial Na(+) channel (ENaC). Prostasin is activated by another transmembrane tryptic protease, matriptase. Because ENaC-mediated dehydration contributes to cystic fibrosis (CF), prostasin and matriptase are potential therapeutic targets, but their catalytic competence on airway epithelial surfaces has been unclear. Seeking tools for exploring sites and modulation of activity, we used recombinant prostasin and matriptase to identify substrate t-butyloxycarbonyl-l-Gln-Ala-Arg-4-nitroanilide (QAR-4NA), which allowed direct assay of proteases in living cells. Comparisons of bronchial epithelial cells (CFBE41o-) with and without functioning cystic fibrosis transmembrane conductance regulator (CFTR) revealed similar levels of apical and basolateral aprotinin-inhibitable activity. Although recombinant matriptase was more active than prostasin in hydrolyzing QAR-4NA, cell surface activity resisted matriptase-selective inhibition, suggesting that prostasin dominates. Surface biotinylation revealed similar expression of matriptase and prostasin in epithelial cells expressing wild-type vs. ΔF508-mutated CFTR. However, the ratio of mature to inactive proprostasin suggested surface enrichment of active enzyme. Although small amounts of matriptase and prostasin were shed spontaneously, prostasin anchored to the cell surface by glycosylphosphatidylinositol was the major contributor to observed QAR-4NA-hydrolyzing activity. For example, the apical surface of wild-type CFBE41o- epithelial cells express 22% of total, extractable, aprotinin-inhibitable, QAR-4NA-hydrolyzing activity and 16% of prostasin immunoreactivity. In conclusion, prostasin is present, mature and active on the apical surface of wild-type and CF bronchial epithelial cells, where it can be targeted for inhibition via the airway lumen.
View on PubMed2013
Coinfection with malaria and nontyphoidal Salmonella serotypes (NTS) can cause life-threatening bacteremia in humans. Coinfection with malaria is a recognized risk factor for invasive NTS, suggesting that malaria impairs intestinal barrier function. Here, we investigated mechanisms and strategies for prevention of coinfection pathology in a mouse model. Our findings reveal that malarial-parasite-infected mice, like humans, develop L-arginine deficiency, which is associated with intestinal mastocytosis, elevated levels of histamine, and enhanced intestinal permeability. Prevention or reversal of L-arginine deficiency blunts mastocytosis in ileal villi as well as bacterial translocation, measured as numbers of mesenteric lymph node CFU of noninvasive Escherichia coli Nissle and Salmonella enterica serotype Typhimurium, the latter of which is naturally invasive in mice. Dietary supplementation of malarial-parasite-infected mice with L-arginine or L-citrulline reduced levels of ileal transcripts encoding interleukin-4 (IL-4), a key mediator of intestinal mastocytosis and macromolecular permeability. Supplementation with L-citrulline also enhanced epithelial adherens and tight junctions in the ilea of coinfected mice. These data suggest that increasing L-arginine bioavailability via oral supplementation can ameliorate malaria-induced intestinal pathology, providing a basis for testing nutritional interventions to reduce malaria-associated mortality in humans.
View on PubMed2014
Prior work established that a deficiency in the cysteine protease dipeptidyl peptidase I (DPPI) improves survival following polymicrobial septic peritonitis. To test whether DPPI regulates survival from severe lung infections, DPPI(-/-) mice were studied in a Klebsiella pneumoniae lung infection model, finding that survival in DPPI(-/-) mice is significantly better than in DPPI(+/+) mice 8d after infection. DPPI(-/-) mice have significantly fewer bacteria in the lung than infected DPPI(+/+) mice, but no difference in lung histopathology, lung injury, or cytokine levels. To explore mechanisms of enhanced bacterial clearance in DPPI(-/-) mice, we examined the status of pulmonary collectins, finding that levels of surfactant protein D, but not of surfactant protein A, are higher in DPPI(-/-) than in DPPI(+/+) BAL fluid, and that DPPI(-/-) BAL fluid aggregate bacteria more effectively than control BAL fluid. Sequencing of the amino terminus of surfactant protein D revealed two or eight additional amino acids in surfactant protein D isolated from DPPI(-/-) mice, suggesting processing by DPPI. These results establish that DPPI is a major determinant of survival following Klebsiella pneumoniae lung infection and suggest that the survival disadvantage in DPPI(+/+) mice is in part due to processing of surfactant protein D by DPPI.
View on PubMed2015
Mast cells (MC) and myeloid dendritic cells (DC) act proximally in detecting and processing antigens and immune insults. We sought to understand their comparative dynamic behavior with respect to the airway epithelium in the steady state and in response to an allergic stimulus in mouse trachea. We devised methods to label MC in living trachea and to demonstrate that MC and DC occupy distinct layers of the tracheal mucosa, with DC being closer to the lumen. DC numbers doubled after allergen challenge, but MC numbers remained stable. MC and DC migrated minimally in either steady state or allergen-challenge conditions, and their interactions with one another appeared to be stochastic and relatively infrequent. While DC, unlike MC, exhibited probing behaviors involving dendrites, these projections did not cross the epithelium into the airway lumen. MC typically were located too far from the epithelial surface to contact the tracheal lumen. However, MC had protrusions toward and into blood vessels, likely to load with IgE. Thus, DC and MC occupy distinct niches and engage in sessile surveillance in the mouse trachea. Little or no access of these cell types to the airway lumen suggests that trans-epithelial transport of proteins in the steady state would be required for them to access luminal antigens.
View on PubMedRegulation of hepatocyte growth factor in mice with pneumonia by peptidases and trans-alveolar flux.
2015
Hepatocyte growth factor (HGF) promotes lung epithelial repair after injury. Because prior studies established that human neutrophil proteases inactivate HGF in vitro, we predicted that HGF levels decrease in lungs infiltrated with neutrophils and that injury is less severe in lungs lacking HGF-inactivating proteases. After establishing that mouse neutrophil elastase cleaves mouse HGF in vitro, we tested our predictions in vivo by examining lung pathology and HGF in mice infected with Mycoplasma pulmonis, which causes neutrophilic tracheobronchitis and pneumonia. Unexpectedly, pneumonia severity was similar in wild type and dipeptidylpeptidase I-deficient (Dppi-/-) mice lacking neutrophil serine protease activity. To assess how this finding related to our prediction that Dppi-activated proteases regulate HGF levels, we measured HGF in serum, bronchoalveolar lavage fluid, and lung tissue from Dppi(+/+) and Dppi(-/-) mice. Contrary to prediction, HGF levels were higher in lavage fluid from infected mice. However, serum and tissue concentrations were not different in infected and uninfected mice, and HGF lung transcript levels did not change. Increased HGF correlated with increased albumin in lavage fluid from infected mice, and immunostaining failed to detect increased lung tissue expression of HGF in infected mice. These findings are consistent with trans-alveolar flux rather than local production as the source of increased HGF in lavage fluid. However, levels of intact HGF from infected mice, normalized for albumin concentration, were two-fold higher in Dppi(-/-) versus Dppi(+/+) lavage fluid, suggesting regulation by Dppi-activated proteases. Consistent with the presence of active HGF, increased expression of activated receptor c-Met was observed in infected tissues. These data suggest that HGF entering alveoli from the bloodstream during pneumonia compensates for destruction by Dppi-activated inflammatory proteases to allow HGF to contribute to epithelial repair.
View on PubMed2015
Mast cells are rich in proteases, which are the major proteins of intracellular granules and are released with histamine and heparin by activated cells. Most of these proteases are active in the granule as well as outside of the mast cell when secreted, and can cleave targets near degranulating mast cells and in adjoining tissue compartments. Some proteases released from mast cells reach the bloodstream and may have far-reaching actions. In terms of relative amounts, the major mast cell proteases include the tryptases, chymases, cathepsin G, carboxypeptidase A3, dipeptidylpeptidase I/cathepsin C, and cathepsins L and S. Some mast cells also produce granzyme B, plasminogen activators, and matrix metalloproteinases. Tryptases and chymases are almost entirely mast cell-specific, whereas other proteases, such as cathepsins G, C, and L are expressed by a variety of inflammatory cells. Carboxypeptidase A3 expression is a property shared by basophils and mast cells. Other proteases, such as mastins, are largely basophil-specific, although human basophils are protease-deficient compared with their murine counterparts. The major classes of mast cell proteases have been targeted for development of therapeutic inhibitors. Also, a human β-tryptase has been proposed as a potential drug itself, to inactivate of snake venins. Diseases linked to mast cell proteases include allergic diseases, such as asthma, eczema, and anaphylaxis, but also include non-allergic diseases such as inflammatory bowel disease, autoimmune arthritis, atherosclerosis, aortic aneurysms, hypertension, myocardial infarction, heart failure, pulmonary hypertension and scarring diseases of lungs and other organs. In some cases, studies performed in mouse models suggest protective or homeostatic roles for specific proteases (or groups of proteases) in infections by bacteria, worms and other parasites, and even in allergic inflammation. At the same time, a clearer picture has emerged of differences in the properties and patterns of expression of proteases expressed in human mast cell subsets, and in humans versus other mammals. These considerations are influencing prioritization of specific protease targets for therapeutic inhibition, as well as options of pre-clinical models, disease indications, and choice of topical versus systemic routes of inhibitor administration.
View on PubMed2015
Tryptic serine proteases of bronchial epithelium regulate ion flux, barrier integrity, and allergic inflammation. Inhibition of some of these proteases is a strategy to improve mucociliary function in cystic fibrosis and asthmatic inflammation. Several inhibitors have been tested in pre-clinical animal models and humans. We hypothesized that these inhibitors inactivate a variety of airway protease targets, potentially with bystander effects. To establish relative potencies and modes of action, we compared inactivation of human prostasin, matriptase, airway trypsin-like protease (HAT), and β-tryptase by nafamostat, camostat, bis(5-amidino-2-benzimidazolyl)methane (BABIM), aprotinin, and benzamidine. Nafamostat achieved complete, nearly stoichiometric and very slowly reversible inhibition of matriptase and tryptase, but inhibited prostasin less potently and was weakest versus HAT. The IC50 of nafamostat's leaving group, 6-amidino-2-naphthol, was >104-fold higher than that of nafamostat itself, consistent with suicide rather than product inhibition as mechanisms of prolonged inactivation. Stoichiometric release of 6-amidino-2-naphthol allowed highly sensitive fluorometric estimation of active-site concentration in preparations of matriptase and tryptase. Camostat inactivated all enzymes but was less potent overall and weakest towards matriptase, which, however was strongly inhibited by BABIM. Aprotinin exhibited nearly stoichiometric inhibition of prostasin and matriptase, but was much weaker towards HAT and was completely ineffective versus tryptase. Benzamidine was universally weak. Thus, each inhibitor profile was distinct. Nafamostat, camostat and aprotinin markedly reduced tryptic activity on the apical surface of cystic fibrosis airway epithelial monolayers, suggesting prostasin as the major source of such activity and supporting strategies targeting prostasin for inactivation.
View on PubMed2002
Previous studies in chondrogenic RCJ3.1C5.18 (C5.18) cells showed that growth of these cells at high extracellular Ca(2+) concentrations ([Ca(2+)](o)) reduced the expression of markers of early chondrocyte differentiation. These studies addressed whether raising [Ca(2+)](o) accelerates C5.18 cell differentiation and whether Ca(2+) receptors (CaRs) are involved in coupling changes in [Ca(2+)](o) to cellular responses. We found that high [Ca(2+)](o) increased expression of osteopontin (OP), osteonectin, and osteocalcin, all markers of terminal differentiation, in C5.18 cells and increased the production of matrix mineral. Overexpression of wild-type CaR cDNA in C5.18 cells suppressed proteoglycan synthesis and aggrecan RNA, two early differentiation markers, and increased OP expression. The sensitivity of these parameters to changes in [Ca(2+)](o) was significantly increased, as indicated by left-shifted dose-responses. In contrast, stable expression of a signaling-defective CaR mutant (Phe707Trp CaR) in C5.18 cells, presumably through dominant-negative inhibition of endogenous CaRs, blocked the suppression of aggrecan RNA levels and proteoglycan accumulation and the enhancement of OP expression by high [Ca(2+)](o). These data support a role for CaRs in mediating high [Ca(2+)](o)-induced differentiation of C5.18 cells.
View on PubMed2003
OBJECTIVE
Strong evidence indicates that at least one key tumour suppressor gene important for the development of malignant parathyroid tumours is located on chromosome 13, but the critical target gene remains unknown. Importantly, the region of acquired DNA loss includes two established tumour suppressor genes, the retinoblastoma gene, RB (RB1) and BRCA2. Resolution of whether RB or BRCA2 is the critical 13q tumour suppressor gene in parathyroid cancer requires analysis of these genes' sequences for intragenic inactivating mutations. Therefore, RB and BRCA2 were analysed in a group of parathyroid carcinomas in which mutations of these genes should be most readily detectable.
PATIENTS AND DESIGN
Six parathyroid carcinomas from four patients which showed loss of heterozygosity (LOH) at the RB locus and/or 13q loss by comparative genomic hybridazation (CGH) were selected from a CGH/LOH-screened panel of 16 carcinoma specimens from 10 patients. These tumours were examined for mutations by direct sequencing of the complete 27-exon coding region, intron-exon boundaries and promoter of RB. The 26 coding exons and intron-exon boundaries of BRCA2 were also directly sequenced in seven parathyroid carcinomas with loss in the BRCA2 region.
RESULTS
No microdeletions, insertions, or point mutations were detected in either RB or BRCA2 in any of the carcinomas.
CONCLUSION
The absence of tumour-specific somatic mutations in RB and BRCA2 suggests that they are unlikely to act as classic tumour suppressor genes in the pathogenesis of parathyroid carcinomas. While decreased expression of these genes might contribute to parathyroid carcinomatosis in a secondary fashion and 13q loss warrants further study as a diagnostic marker for parathyroid carcinoma, the putative 13q tumour suppressor awaits identification.
View on PubMed2003
BACKGROUND
We looked for mutations of the HRPT2 gene, which encodes the parafibromin protein, in sporadic parathyroid carcinoma because germ-line inactivating HRPT2 mutations have been found in a type of familial hyperparathyroidism--hyperparathyroidism-jaw tumor (HPT-JT) syndrome--that carries an increased risk of parathyroid cancer.
METHODS
We directly sequenced the full coding and flanking splice-junctional regions of the HRPT2 gene in 21 parathyroid carcinomas from 15 patients who had no known family history of primary hyperparathyroidism or the HPT-JT syndrome at presentation. We also sought to confirm the somatic nature of the identified mutations and tested the carcinomas for tumor-specific loss of heterozygosity at HRPT2.
RESULTS
Parathyroid carcinomas from 10 of the 15 patients had HRPT2 mutations, all of which were predicted to inactivate the encoded parafibromin protein. Two distinct HRPT2 mutations were found in tumors from five patients, and biallelic inactivation as a result of a mutation and loss of heterozygosity was found in one tumor. At least one HRPT2 mutation was demonstrably somatic in carcinomas from six patients. Unexpectedly, HRPT2 mutations in the parathyroid carcinomas of three patients were identified as germ-line mutations.
CONCLUSIONS
Sporadic parathyroid carcinomas frequently have HRPT2 mutations that are likely to be of pathogenetic importance. Certain patients with apparently sporadic parathyroid carcinoma carry germ-line mutations in HRPT2 and may have the HPT-JT syndrome or a phenotypic variant.
View on PubMed