Publications
We work hard to attract, retain, and support the most outstanding faculty.
2011
Aquaporin 3 (AQP3), a member of the aquaglyceroporin family, which transports water and glycerol, is robustly expressed in epidermis and plays an important role in stratum corneum hydration, permeability barrier function and wound healing. PPAR and LXR activation regulates the expression of many proteins in the epidermis and thereby can affect epidermal function. Here, we report that PPARgamma activators markedly stimulate AQP3 mRNA expression in both undifferentiated and differentiated cultured human keratinocytes (CHKs). The increase in AQP3 mRNA by PPARgamma activator occurs in a dose- and time-dependent fashion. Increased AQP3 mRNA levels are accompanied by an increase in AQP3 protein in undifferentiated keratinocytes and a significant increase in glycerol uptake. Activation of LXR, RAR and RXR also increases AQP3 mRNA levels in undifferentiated and differentiated CHKs, but to a lesser extent. PPARdelta activation stimulates AQP3 expression in undifferentiated CHKs but decreases expression in differentiated CHKs. In contrast, PPARalpha activators do not alter AQP3 expression. AQP9 and AQP10, other members of aquaglyceroporin family, are less abundantly expressed in CHKs, and their expression levels are not significantly altered by treatment with LXR, PPAR, RAR or RXR activators. Finally, when topically applied, the PPARgamma activator, ciglitazone, induces AQP3 but not AQP9 gene expression in mouse epidermis. Our data demonstrate that PPAR and LXR activators stimulate AQP3 expression, providing an additional mechanism by which PPAR and LXR activators regulate epidermal function.
View on PubMed2011
Although topical glucocorticoids (GCs) show potent anti-inflammatory activity in inflamed skin, they can also exert numerous harmful effects on epidermal structure and function. In contrast, topical applications of ligands of peroxisome proliferator-activated receptor-α (PPARα) not only reduce inflammation but also improve cutaneous barrier homeostasis. Therefore, we examined whether sequential topical GCs followed by topical Wy14643 (a ligand of PPARα) might be more effective than either alone for atopic dermatitis (AD) in a hapten (oxazolone (Ox))-induced murine model with multiple features of AD (Ox-AD). Despite expected anti-inflammatory benefits, topical GC alone induced (i) epidermal thinning; (ii) reduced expression of involucrin, loricrin, and filaggrin; and (iii) allowed outside-to-inside penetration of an epicutaneous tracer. Although Wy14643 alone yielded significant therapeutic benefits in mice with mild or moderate Ox-AD, it was less effective in severe Ox-AD. Yet, topical application of Wy14643 after GC was not only significantly effective comparable with GC alone, but it also prevented GC-induced structural and functional abnormalities in permeability barrier homeostasis. Moreover, rebound flares were largely absent after sequential treatment with GC and Wy14643. Together, these results show that GC and PPARα ligand therapy together is not only effective but also prevents development of GC-induced side effects, including rebound flares, in murine AD.
View on PubMed2011
We examined if lipopolysaccharide (LPS) treatment of mice affected cardiolipin (CL) synthesis. Mice were injected i.p. with LPS, the liver harvested, and CL synthase (CLS) enzyme activity and its mRNA expression examined. Treatment of mice with LPS resulted in a 55% decrease (p < 0.01) in mRNA expression of murine CLS compared to controls, but CLS enzyme activity was unaltered. The pool size of liver CL and other phospholipids were unaltered by LPS treatment. A similar effect was observed in murine epidermal fat pad and in vitro in RAW mouse macrophages and in human HepG2 cells. LPS treatment of HepG2 cells transiently expressing a histidine-tagged human cardiolipin synthase-1 (hCLS1) reduced hCLS1 mRNA and newly synthesized CLS activity indicating that LPS inhibits production of newly synthesized hCLS1 via reduction in hCLS1 mRNA. The results clearly indicate that CLS mRNA levels cannot be correlated with CLS enzyme activity nor CL content in the LPS model of inflammation.
View on PubMed2011
BACKGROUND
Contact dermatitises, including allergic contact dermatitis and irritant contact dermatitis, are among the most common skin disorders in humans. Chinese herbal medicines (CHM) have been used in treating contact dermatitises for centuries. Systemic administration of CHM, including ingredients in huangdang mixture containing Chinese angelica, radix Paeonlae rubra, cat nut, and phelloden dron, rhizoma alismatis, rhizoma smilacis glabrae, and rhizome of swordlike, improves allergic contact dermatitis induced by l-fluoro-2,4-dinitrobenzene. Whether topical applications of these herbal extracts display preventive and/or therapeutic effects on contact dermatitis, thereby avoiding the potential side effects of systemic CHM, remains largely unknown.
AIMS
To determine whether this topical CHM extract exerts preventive and/or therapeutic effects, we assessed its efficacy in both allergic contact dermatitis and irritant contact dermatitis murine models.
MATERIALS AND METHODS
Allergic contact dermatitis and irritant contact dermatitis murine models were established by topical oxazolone and a phorbol ester (12-O-tetradecanoylphorbol-13-acetate; TPA), respectively. Ear thickness was assessed in both dermatitis models.
RESULTS
Our results demonstrate that this topical CHM extract exhibits both therapeutic and preventive effects in acute irritant contact dermatitis but no demonstrable efficacy in murine allergic contact dermatitis.
CONCLUSION
These results suggest that this topical CHM extract could provide an alternative regimen for the prevention and treatment of irritant contact dermatitis.
View on PubMed2012
A major function of the skin is to provide a barrier to the movement of water and electrolytes, which is required for life in a terrestrial environment. This permeability barrier is localized to the stratum corneum and is mediated by extracellular lipid-enriched lamellar membranes, which are delivered to the extracellular spaces by the secretion of lamellar bodies by stratum granulosum cells. A large number of factors have been shown to regulate the formation of this permeability barrier. Specifically, lamellar body secretion and permeability barrier formation are accelerated by decreases in the calcium content in the stratum granulosum layer of the epidermis. In addition, increased expression of cytokines and growth factors and the activation of nuclear hormone receptors (peroxisome proliferator-activated receptors, liver X receptors, vitamin D receptor) accelerate permeability barrier formation. In contrast, nitric oxide, protease-activated receptor 2 activation, glucocorticoids, and testosterone inhibit permeability barrier formation. The ability of a variety of factors to regulate permeability barrier formation allows for a more precise and nuanced regulation.
View on PubMed2012
Ichthyoses, including inherited disorders of lipid metabolism, display a permeability barrier abnormality in which the severity of the clinical phenotype parallels the prominence of the barrier defect. The pathogenesis of the cutaneous phenotype represents the consequences of the mutation for epidermal function, coupled with a "best attempt" by affected epidermis to generate a competent barrier in a terrestrial environment. A compromised barrier in normal epidermis triggers a vigorous set of metabolic responses that rapidly normalizes function, but ichthyotic epidermis, which is inherently compromised, only partially succeeds in this effort. Unraveling mechanisms that account for barrier dysfunction in the ichthyoses has identified multiple, subcellular, and biochemical processes that contribute to the clinical phenotype. Current treatment of the ichthyoses remains largely symptomatic: directed toward reducing scale or corrective gene therapy. Reducing scale is often minimally effective. Gene therapy is impeded by multiple pitfalls, including difficulties in transcutaneous drug delivery, high costs, and discomfort of injections. We have begun to use information about disease pathogenesis to identify novel, pathogenesis-based therapeutic strategies for the ichthyoses. The clinical phenotype often reflects not only a deficiency of pathway end product due to reduced-function mutations in key synthetic enzymes but often also accumulation of proximal, potentially toxic metabolites. As a result, depending upon the identified pathomechanism(s) for each disorder, the accompanying ichthyosis can be treated by topical provision of pathway product (eg, cholesterol), with or without a proximal enzyme inhibitor (eg, simvastatin), to block metabolite production. Among the disorders of distal cholesterol metabolism, the cutaneous phenotype in Congenital Hemidysplasia with Ichthyosiform Erythroderma and Limb Defects (CHILD syndrome) and X-linked ichthyosis reflect metabolite accumulation and deficiency of pathway product (ie, cholesterol). We validated this therapeutic approach in two CHILD syndrome patients who failed to improve with topical cholesterol alone, but cleared with dual treatment with cholesterol plus lovastatin. In theory, the ichthyoses in other inherited lipid metabolic disorders could be treated analogously. This pathogenesis (pathway)-driven approach possesses several inherent advantages: (1) it is mechanism-specific for each disorder; (2) it is inherently safe, because natural lipids and/or approved drugs often are utilized; and (3) it should be inexpensive, and therefore it could be used widely in the developing world.
View on PubMed2012
The two primary barrier functions of skin (permeability and microbial barriers) are provided by lipids and proteins delivered to the extracellular spaces of the stratum corneum by the secretion of lamellar bodies. Owing to their importance in this process, the mechanisms of and the factors regulating lamellar body formation must be better understood. Tarutani et al. (2012) provide data furthering the concept of the importance of the Golgi network in lamellar body formation and the necessity of acidification of the Golgi for normal function.
View on PubMed2012
In terrestrial animals, the epidermal barrier transitions from covering an organism suspended in a liquid environment in utero, to protecting a terrestrial animal postnatally from air and environmental exposure. Tight junctions (TJ) are essential for establishing the epidermal permeability barrier during embryonic development and modulate normal epidermal development and barrier functions postnatally. We now report that TJ function, as well as claudin-1 and occludin expression, change in parallel during late epidermal development. Specifically, TJ block the paracellular movement of Lanthanum (La(3+)) early in rat in vivo prenatal epidermal development, at gestational days 18-19, with concurrent upregulation of claudin-1 and occludin. TJ then become more permeable to ions and water as the fetus approaches parturition, concomitant with development of the lipid epidermal permeability barrier, at days 20-21. This sequence is recapitulated in cultured human epidermal equivalents (HEE), as assessed both by ultrastructural studies comparing permeation of large and small molecules and by the standard electrophysiologic parameter of resistance (R), suggesting further that this pattern of development is intrinsic to mammalian epidermal development. These findings demonstrate that the role of TJ changes during epidermal development, and further suggest that the TJ-based and lipid-based epidermal permeability barriers are interdependent.
View on PubMed2012
Systemic antagonists of the histamine type 1 and 2 receptors (H1/2r) are widely used as anti-pruritics and central sedatives, but demonstrate only modest anti-inflammatory activity. Because many inflammatory dermatoses result from defects in cutaneous barrier function, and because keratinocytes express both Hr1 and Hr2, we hypothesized that H1/2r antagonists might be more effective if they were used topically to treat inflammatory dermatoses. Topical H1/2r antagonists additively enhanced permeability barrier homeostasis in normal mouse skin by the following mechanisms: (i) stimulation of epidermal differentiation, leading to thickened cornified envelopes; and (ii) enhanced epidermal lipid synthesis and secretion. As barrier homeostasis was enhanced to a comparable extent in mast cell-deficient mice, with no further improvement following application of topical H1/2r antagonists, H1/2r antagonists likely oppose mast cell-derived histamines. In four immunologically diverse, murine disease models, characterized by either inflammation alone (acute irritant contact dermatitis, acute allergic contact dermatitis) or by prominent barrier abnormalities (subacute allergic contact dermatitis, atopic dermatitis), topical H1/2r agonists aggravated, whereas H1/2r antagonists improved, inflammation and/or barrier function. The apparent ability of topical H1r/2r antagonists to target epidermal H1/2r could translate into increased efficacy in the treatment of inflammatory dermatoses, likely due to decreased inflammation and enhanced barrier function. These results could shift current paradigms of antihistamine utilization from a predominantly systemic to a topical approach.
View on PubMed2013
A key function of the skin is to provide a permeability barrier to restrict the movement of water, electrolytes, and other small molecules between the outside environment and the internal milieu. Following disruption of the permeability barrier, there is a rapid restoration of barrier function, and one of the key signals initiating this repair response is a decrease in the concentration of calcium in the outer epidermis. In this issue, Borkowski et al. present evidence showing that activation of Toll receptor 3 by double-stranded RNA may be another pathway for activation of permeability barrier repair. These results provide further evidence for a link between innate immunity and the permeability barrier.
View on PubMed