Publications
We work hard to attract, retain, and support the most outstanding faculty.
2006
Tryptases secreted by tissue mast cells and basophils can enter the bloodstream. In human subjects tryptases are encoded by several genes and alleles, including alpha, beta, gamma, and delta. Common variations include complete absence of alpha genes. Until recently, alpha tryptase was considered to be the major tryptase secreted at baseline and in mastocytosis. However, lack of alpha tryptase genes has little effect on circulating tryptase levels, which are now thought mainly to consist of inactive pro-beta tryptase secreted constitutively rather than stored in granules with mature tryptases. Pro-beta tryptase levels thus might reflect total body mast cell content. In contrast, mature beta tryptase can increase transiently in severe systemic anaphylaxis and confirm the diagnosis. However, it might fail to increase in food anaphylaxis or might increase nonspecifically in samples acquired after death. Thus pro- and mature beta tryptase measurements are useful but associated with false-negative and false-positive results, which need to be considered in drawing clinical conclusions in cases of suspected anaphylaxis.
View on PubMed2006
Prostasin, a trypsinlike serine peptidase, is highly expressed in prostate, kidney, and lung epithelia, where it is bound to the cell surface, secreted, or both. Prostasin activates the epithelial sodium channel (ENaC) and suppresses invasion of prostate and breast cancer cells. The studies reported here establish mechanisms of membrane anchoring and secretion in kidney and lung epithelial cells and demonstrate a critical role for prostasin in regulating epithelial monolayer function. We report that endogenous mouse prostasin is glycosylphosphatidylinositol (GPI) anchored to the cell surface and is constitutively secreted from the apical surface of kidney cortical collecting duct cells. Using site-directed mutagenesis, detergent phase separation, and RNA interference approaches, we show that prostasin secretion depends on GPI anchor cleavage by endogenous GPI-specific phospholipase D1 (Gpld1). Secretion of prostasin by kidney and lung epithelial cells, in contrast to prostate epithelium, does not depend on COOH-terminal processing at conserved Arg(322). Using stably transfected M-1 cells expressing wild-type, catalytically inactive, or chimeric transmembrane (not GPI)-anchored prostasins we establish that prostasin regulates transepithelial resistance, current, and paracellular permeability by GPI anchor- and protease activity-dependent mechanisms. These studies demonstrate a novel role for prostasin in regulating epithelial monolayer resistance and permeability in kidney epithelial cells and, furthermore, show specifically that prostasin is a critical regulator of transepithelial ion transport in M-1 cells. These functions depend on the GPI anchor as well as the peptidase activity of prostasin. These studies suggest that cell-specific Gpld1- or peptidase-dependent pathways for prostasin secretion may control prostasin functions in a tissue-specific manner.
View on PubMed2006
The cysteine protease dipeptidyl peptidase I (DPPI) activates granule-associated immune-cell serine proteases. The in vivo activator of DPPI itself is unknown; however, cathepsins L and S are candidates because they activate pro-DPPI in vitro. In this study, we tested whether cathepsins L and S activate pro-DPPI in vivo by characterizing DPPI activity and processing in cells lacking cathepsins L and S. DPPI activity, and the relative size and amounts of DPPI heavy and light chains, were identical in mast cells from wild-type and cathepsin L/S double-null mice. Furthermore, the activity of DPPI-dependent chymase was preserved in tissues of cathepsin L/S double-null mice. These results show that neither cathepsin L nor S is required for activation of DPPI and suggest that one or more additional proteases is responsible.
View on PubMed2006
Airways are protected from pathogens by forces allied with innate and adaptive immunity. Recent investigations establish critical defensive roles for leukocyte and mast cell serine-class peptidases garrisoned in membrane-bound organelles-here termed Granule-Associated Serine Peptidases of Immune Defense, or GASPIDs. Some better characterized GASPIDs include neutrophil elastase and cathepsin G (which defend against bacteria), proteinase-3 (targeted by antineutrophil antibodies in Wegener's vasculitis), mast cell beta-tryptase and chymase (which promote allergic inflammation), granzymes A and B (which launch apoptosis pathways in infected host cells), and factor D (which activates complement's alternative pathway). GASPIDs can defend against pathogens but can harm host cells in the process, and therefore become targets for pharmaceutical inhibition. They vary widely in specificity, yet are phylogenetically similar. Mammalian speciation supported a remarkable flowering of these enzymes as they co-evolved with specialized immune cells, including mast cells, basophils, eosinophils, cytolytic T-cells, natural killer cells, neutrophils, macrophages and dendritic cells. Many GASPIDs continue to evolve rapidly, providing some of the most conspicuous examples of divergent protein evolution. Consequently, students of GASPIDs are rewarded not only with insights into their roles in lung immune defense but also with clues to the origins of cellular specialization in vertebrate immunity.
View on PubMed2006
Mycoplasmas cause chronic inflammation and are implicated in asthma. Mast cells defend against mycoplasma infection and worsen allergic inflammation, which is mediated partly by histamine. To address the hypothesis that mycoplasma provokes histamine release, we exposed mice to Mycoplasma pulmonis, comparing responses in wild-type and mast cell-deficient KitW-sh/KitW-sh (W-sh) mice. Low histamine levels in uninfected W-sh mice confirmed the conventional wisdom that mast cells are principal sources of airway and serum histamine. Although mycoplasma did not release histamine acutely in wild-type airways, levels rose up to 50-fold above baseline 1 week after infection in mice heavily burdened with neutrophils. Surprisingly, histamine levels also rose profoundly in infected W-sh lungs, increasing in parallel with neutrophils and declining with neutrophil depletion. Furthermore, neutrophils from infected airway were highly enriched in histamine compared with naive neutrophils. In vitro, mycoplasma directly stimulated histamine production by naive neutrophils and strongly upregulated mRNA encoding histidine decarboxylase, the rate-limiting enzyme in histamine synthesis. In vivo, treatment with antihistamines pyrilamine or cimetidine decreased lung weight and severity of pneumonia and tracheobronchitis in infected W-sh mice. These findings suggest that neutrophils, provoked by mycoplasma, greatly expand their capacity to synthesize histamine, thereby contributing to lung and airway inflammation.
View on PubMed2007
Recent investigations point to an important role for peptidases in regulating transcellular ion transport by the epithelial Na(+) channel, ENaC. Several peptidases, including furins and proteasomal hydrolases, modulate ENaC maturation and disposal. More idiosyncratically, apical Na(+) transport by ENaC in polarized epithelia of kidney, airway, and gut is stimulated constitutively by one or more trypsin-family serine peptidases, as revealed by inhibition of amiloride-sensitive Na(+) transport by broad-spectrum antipeptidases, including aprotinin and bikunin/SPINT2. In vitro, the transporting activity of aprotinin-suppressed ENaC can be restored by exposure to trypsin. The prototypical channel-activating peptidase (CAP) is a type 1 membrane-anchored tryptic peptidase first identified in Xenopus kidney cells. Frog CAP1 strongly upregulates Na(+) transport when coexpressed with ENaC in oocytes. The amphibian enzyme's apparent mammalian orthologue is prostasin, otherwise known as CAP1, which is coexpressed with ENaC in a variety of epithelia. In airway cells, prostasin is the major basal regulator of ENaC activity, as suggested by inhibition and knockdown experiments. Other candidate regulators of mature ENaC include CAP2/TMPRSS4 and CAP3/matriptase (also known as membrane-type serine protease 1/ST14). Mammalian CAPs are potential targets for treatment of ENaC-mediated Na(+) hyperabsorption by the airway in cystic fibrosis (CF) and by the kidney in hypertension. CAPs can be important for mammalian development, as indicated by embryonic lethality in mice with null mutations of CAP1/prostasin. Mice with selectively knocked out expression of CAP1/prostasin in the epidermis and mice with globally knocked out expression of CAP3/matriptase exhibit phenotypically similar defects in skin barrier function and neonatal death from dehydration. In rats, transgenic overexpression of human prostasin disturbs salt balance and causes hypertension. Thus, several converging lines of evidence indicate that ENaC function is regulated by peptidases, and that such regulation is critical for embryonic development and adult function of organs such as skin, kidney, and lung.
View on PubMed2007
BACKGROUND & AIMS
We studied the role of protease-activated receptor 2 (PAR(2)) and its activating enzymes, trypsins and tryptase, in Clostridium difficile toxin A (TxA)-induced enteritis.
METHODS
We injected TxA into ileal loops in PAR(2) or dipeptidyl peptidase I (DPPI) knockout mice or in wild-type mice pretreated with tryptase inhibitors (FUT-175 or MPI-0442352) or soybean trypsin inhibitor. We examined the effect of TxA on expression and activity of PAR(2) and trypsin IV messenger RNA in the ileum and cultured colonocytes. We injected activating peptide (AP), trypsins, tryptase, and p23 in wild-type mice, some pretreated with the neurokinin 1 receptor antagonist SR140333.
RESULTS
TxA increased fluid secretion, myeloperoxidase activity in fluid and tissue, and histologic damage. PAR(2) deletion decreased TxA-induced ileitis, reduced luminal fluid secretion by 20%, decreased tissue and fluid myeloperoxidase by 50%, and diminished epithelial damage, edema, and neutrophil infiltration. DPPI deletion reduced secretion by 20% and fluid myeloperoxidase by 55%. In wild-type mice, FUT-175 or MPI-0442352 inhibited secretion by 24%-28% and tissue and fluid myeloperoxidase by 31%-71%. Soybean trypsin inhibitor reduced secretion to background levels and tissue myeloperoxidase by up to 50%. TxA increased expression of PAR(2) and trypsin IV in enterocytes and colonocytes and caused a 2-fold increase in Ca(2+) responses to PAR(2) AP. AP, tryptase, and trypsin isozymes (trypsin I/II, trypsin IV, p23) caused ileitis. SR140333 prevented AP-induced ileitis.
CONCLUSIONS
PAR(2) and its activators are proinflammatory in TxA-induced enteritis. TxA stimulates existing PAR(2) and up-regulates PAR(2) and activating proteases, and PAR(2) causes inflammation by neurogenic mechanisms.
View on PubMed2007
Serum mast cell tryptase levels are used as a diagnostic criterion and surrogate marker of disease severity in mastocytosis. Approximately 29% of the healthy population lacks alpha tryptase genes; however, it is not known whether lack of alpha tryptase genes leads to variability in tryptase levels or impacts on disease severity in mastocytosis. We have thus analyzed tryptase haplotype in patients with mastocytosis, computing correlations between haplotype and plasma total and mature tryptase levels; and disease category. We found: (1) the distribution of tryptase haplotype in patients with mastocytosis appeared consistent with Hardy-Weinberg equilibrium and the distribution in the general population; (2) the disease severity and plasma tryptase levels were not affected by the number of alpha or beta tryptase alleles in this study; and (3) information about the tryptase haplotype did not provide any prognostic value about the severity of disease. Total and mature tryptase levels positively correlated with disease severity, as well as prothrombin time and partial thromboplastin time, and negatively correlated with the hemoglobin concentration.
View on PubMed2007
Tryptases and chymases are the major proteins stored and secreted by mast cells. The types, amounts, and properties of these serine peptidases vary by mast cell subtype, tissue, and mammal of origin. Membrane-anchored gamma-tryptases are tryptic, prostasin-like, type I peptidases that remain membrane attached on release and act locally. Soluble tryptases, including their close relatives, mastins, form inhibitor-resistant oligomers that act more remotely. Befitting their greater destructive potential, chymases are quickly inhibited after release, although some gain protection by associating with proteoglycans. Most chymase-like enzymes, including mast cell cathepsin G, hydrolyze chymotryptic substrates, an uncommon capability in the proteome. Some rodent chymases, however, have mutations resulting in elastolytic activity. Secreted tryptases and chymases promote inflammation, matrix destruction, and tissue remodeling by several mechanisms, including destroying procoagulant, matrix, growth, and differentiation factors and activating proteinase-activated receptors, urokinase, metalloproteinases, and angiotensin. They also modulate immune responses by hydrolyzing chemokines and cytokines. At least one chymase protects mice from intestinal worms. Tryptases and chymases can also oppose inflammation by inactivating allergens and neuropeptides causing inflammation and bronchoconstriction. Thus, like mast cells themselves, mast cell serine peptidases play multiple roles in host defense, and any accounting of benefit versus harm is necessarily context specific.
View on PubMed2009
Human chymase is a highly efficient angiotensin II-generating serine peptidase expressed by mast cells. When secreted from degranulating cells, it can interact with a variety of circulating antipeptidases, but is mostly captured by alpha(2)-macroglobulin, which sequesters peptidases in a cage-like structure that precludes interactions with large protein substrates and inhibitors, like serpins. The present work shows that alpha(2)-macroglobulin-bound chymase remains accessible to small substrates, including angiotensin I, with activity in serum that is stable with prolonged incubation. We used alpha(2)-macroglobulin capture to develop a sensitive, microtiter plate-based assay for serum chymase, assisted by a novel substrate synthesized based on results of combinatorial screening of peptide substrates. The substrate has low background hydrolysis in serum and is chymase-selective, with minimal cleavage by the chymotryptic peptidases cathepsin G and chymotrypsin. The assay detects activity in chymase-spiked serum with a threshold of approximately 1 pM (30 pg/ml), and reveals native chymase activity in serum of most subjects with systemic mastocytosis. alpha(2)-Macroglobulin-bound chymase generates angiotensin II in chymase-spiked serum, and it appears in native serum as chymostatin-inhibited activity, which can exceed activity of captopril-sensitive angiotensin-converting enzyme. These findings suggest that chymase bound to alpha(2)-macroglobulin is active, that the complex is an angiotensin-converting enzyme inhibitor-resistant reservoir of angiotensin II-generating activity, and that alpha(2)-macroglobulin capture may be exploited in assessing systemic release of secreted peptidases.
View on PubMed