Publications
We work hard to attract, retain, and support the most outstanding faculty.
2008
2008
BACKGROUND
We hypothesized that laparoscopic adjustable gastric banding (LAGB) reduces weight and modulates ghrelin production, but largely spares gastrointestinal endocrine function. To examine this hypothesis, we determined plasma concentrations of appetite-control, insulinotropic, and digestive hormones in relation to LAGB.
METHODS
Twenty-four patients undergoing LAGB were prospectively enrolled. Body mass index (BMI) was measured and blood samples obtained at baseline and 6 and 12 months post-surgery. Plasma concentrations of leptin, acylated and total ghrelin, pancreatic polypeptide (PP), insulin, glucose-dependent insulinotropic peptide (GIP), active glucagon-like peptide-1 (GLP-1), gastrin, and pepsinogens I and II were measured using enzyme-linked immunoassays.
RESULTS
Median percent excess weight loss (%EWL) over 12 months was 45.7% with median BMI decreasing from 43.2 at baseline to 33.8 at 12 months post-surgery (p < 0.001). Median leptin levels decreased from 19.7 ng/ml at baseline to 6.9 ng/ml at 12 months post-surgery (p < 0.001). In contrast, plasma levels of acylated and total ghrelin, PP, insulin, GIP, GLP-1, gastrin, and pepsinogen I did not change in relation to surgery (p > 0.05). Pepsinogen II levels were significantly lower 6 months after LAGB but returned to baseline levels by 12 months.
CONCLUSIONS
LAGB yielded substantial %EWL and a proportional decrease in plasma leptin. Our results support the hypothesis that LAGB works in part by suppressing the rise in ghrelin that normally accompanies weight loss. Unchanged concentrations of insulinotropic and digestive hormones suggest that gastrointestinal endocrine function is largely maintained in the long term.
View on PubMed2008
2008
2008
Macrophage recognition of Salmonella enterica serovar Typhimurium leads to a cascade of signaling events, including the activation of Src family and Syk kinases and the production of reactive oxygen species (ROS), which are critical for host innate defense during early stages of bacterial infection. ROS production depends on the NADPH oxidase, but little is known about the innate immune receptors and proximal adapters that regulate Salmonella-induced ROS. Herein, we demonstrate that serovar Typhimurium induces ROS through a pathway that requires both triggering receptor expressed on myeloid cells 2 (TREM2) and DAP12. This pathway is highly analogous to the pathways utilized by Fc receptors and integrins to regulate ROS production. Oral infection of mice with serovar Typhimurium demonstrates that the DAP12-dependent pathway regulates cecal colonization during early stages of Salmonella infection. Thus, DAP12 is an important regulator of Salmonella-induced ROS production in macrophages, and TREM2 is essential for linking DAP12 to the innate response to serovar Typhimurium.
View on PubMed2008
2008
2008
2008
2008
Osteopenia and periarticular bony erosion are consequences of chronic inflammatory autoimmune disease due to an imbalance of osteoclast activity relative to new bone formation. Osteoclasts, which are specialized as the only bone resorbing cell type, are differentiated from hematopoietic myeloid precursor cells. Inflammatory signals mediated by multiple types of immune cells and cytokines have significant influence over osteoclast differentiation and function through direct effects on osteoclast precursors and indirect effects via osteoblasts and other cells in the bony microenvironment including synovial cells, stromal cells, osteocytes and chondrocytes. Recent studies have demonstrated that osteoclasts themselves express a number of immune receptors and are regulated similarly to macrophages and dendritic cells, closely related cells in the innate immune system. Though we are only beginning to understand the roles of innate immune receptors in osteoclasts, some of these receptors have been shown to be critical regulators of differentiation and function of osteoclasts. Osteoclasts likely function as the innate immune cells of the bone, thus are highly regulated to appropriately respond to stress and inflammatory changes in their microenvironment.
View on PubMed